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Modern chemical biology and drug discovery each seek to 
identify new small molecules that potently and selectively 
modulate the functions of target proteins. Historically, 

nature has been an important source for such molecules, with knowl-
edge of toxic or medicinal properties often long predating knowledge 
of precise target or mechanism. Natural selection provides a slow 
and steady stream of bioactive small molecules, but each of these 
molecules must perforce confer reproductive advantage in order for 
nature to ‘invest’ in its synthesis. In recent decades, investments in 
finding new small-molecule probes and drugs have expanded to a 
paradigm of screening large numbers (typically 103–106) of com-
pounds for those that elicit a desired biological response1,2. In some 
cases, these studies interrogate natural products3,4, but more often 
they involve collections of synthetic small molecules prepared by 
organic chemistry strategies5,6 that rapidly yield large collections of 
relatively pure compounds. Thus, the overall discovery paradigm 
involves investments both in organic synthesis and in biological 
testing of large compound collections.

Since the revolution in molecular biology, the biological test-
ing component of screening-based discovery has overwhelm-
ingly involved testing compounds for effects on purified proteins. 
However, with advances in assay technology, many research pro-
grams are increasingly turning (or returning) to cell- or organism- 
based phenotypic assays that benefit from preserving the cellular  
context of protein function7. The cost paid for this benefit is that 
the precise protein targets or mechanisms of action responsible 
for the observed phenotypes remain to be determined. Even 
after a relevant target is established, additional functional studies 
may help to identify unwanted off-target effects or establish new 
roles for the target protein in biological networks. In this review,  
we address these important steps in the discovery process,  
termed target identification or deconvolution8, illustrating 
methods available to approach the problem, highlighting recent 
advances and discussing how findings from multiple approaches 
are integrated.

Background
Historically, genetics has provided powerful biological insights, 
allowing characterization of protein function by manipulation 
of genetic sequence. A forward genetics (or classical genetics) 

approach is characterized by identifying, often under experimen-
tal selection pressure, a phenotype of interest, followed by identi-
fication of the gene (or genes) responsible for the phenotype (see  
refs. 9, 10). Modern molecular biological methods, particularly 
genetic engineering approaches, have given rise to reverse genetics 
(sometimes equated with molecular genetics), in which a specific 
gene of interest is targeted for mutation, deletion or functional abla-
tion (for example, with RNAi11), followed by a broad search for the 
resulting phenotype (see refs. 12, 13).

By analogy to genetics, there are two fundamental approaches to 
understanding the action of small molecules on biological systems14,15. 
Biochemical screening approaches are analogous to reverse genet-
ics (Fig. 1a). In advance of conducting a high-throughput screen,  
the protein target is selected and (typically) purified before expo-
sure to small molecules16,17. This target validation or credentialing  
is a time-consuming process that involves demonstrating the rel-
evance of the protein for a particular biological pathway, pro-
cess or disease of interest18,19. Once a target has been validated, it 
is presumed that binders or inhibitors of this protein will affect 
the desired process. Often, however, such an impact needs to be 
characterized more completely in cells or animals by observing  
compound-induced phenotypes; hence, this approach has been 
termed reverse chemical genetics.

In contrast, forward chemical genetics refers to the process of 
testing small molecules directly for their impact on biological pro-
cesses, often in cells or even in animals (Fig. 1b)20,21. Phenotypic 
screens expose candidate compounds to proteins in more biologi-
cally relevant contexts than screens involving purified proteins7,22. 
Because these screens measure cellular function without imposing 
preconceived notions of the relevant targets and signaling pathways, 
they offer the possibility of discovering new therapeutic targets. 
Indeed, several important drug programs have been inspired by 
phenotypic screening results, including the effects of cyclosporine A 
and FK506 on T-cell receptor signaling7,23, leading to the discoveries 
of FKBP12 (ref. 24), calcineurin25 and mTOR26, and the performance 
of trapoxin A in differentiation and proliferation assays27, leading to 
the discovery of histone deacetylases28,29. Importantly, such assays 
‘prevalidate’ the small molecule and its (initially unknown) protein 
target as an effective means of perturbing the biological process or 
disease model under study.
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Target-identification and mechanism-of-action studies have important roles in small-molecule probe and drug discovery. 
Biological and technological advances have resulted in the increasing use of cell-based assays to discover new biologically 
active small molecules. Such studies allow small-molecule action to be tested in a more disease-relevant setting at the outset, 
but they require follow-up studies to determine the precise protein target or targets responsible for the observed phenotype.  
Target identification can be approached by direct biochemical methods, genetic interactions or computational inference.  
In many cases, however, combinations of approaches may be required to fully characterize on-target and off-target effects and 
to understand mechanisms of small-molecule action.
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However, phenotypic assays require a subsequent effort to dis-
cover the molecular targets of bioactive small molecules, which 
can be a complex endeavor30. We often assume that direct inter-
action with a single target is responsible for phenotypic observa-
tions, but this need not be the case. Many drugs show side effects 
owing to interactions with ‘off-target’ proteins31,32, and even small 
molecule–induced phenotypes observed in cell culture may repre-
sent the superposition of effects on multiple targets33,34. For drug 
development, target identification is important to follow-up studies, 
aiding medicinal chemistry efforts. Furthermore, identifying both 
the therapeutic target and other targets that might cause unwanted 
side effects enables optimization of small-molecule selectivity35. 
Conversely, polypharmacology can be considered a new tool, lever-
aging multiple small-molecule effects to gain maximal effect, once 
again underscoring the benefit of an unbiased approach to screen-
ing and the need for target deconvolution36.

approaches to target identification
In this review, we will cover three distinct and complementary 
approaches for discovering the protein target of a small molecule: 
direct biochemical methods, genetic interaction methods and com-
putational inference methods. Direct methods involve labeling the 
protein or small molecule of interest, incubation of the two popula-
tions and direct detection of binding, usually following some type 
of wash procedure (reviewed in ref. 37). Genetic manipulation can 
also be used to identify protein targets by modulating presumed tar-
gets in cells, thereby changing small-molecule sensitivity (reviewed 
in ref. 38). Target hypotheses, in contrast, can be generated by com-
putational inference, using pattern recognition to compare small-
molecule effects to those of known reference molecules or genetic 
perturbations39–41. Mechanistic hypotheses, rather than targets per se,  
for new compounds emerge from such tests. The target pathway or 
protein of a new small molecule is inferred but remains to be con-
firmed42. Similarly, hypotheses regarding the mechanism of action 

of a compound can be generated by gene expression profiling in 
the presence or absence of compound treatment. Many target-
 identification projects actually proceed through a combination of 
these methods, where researchers use both direct measurements 
and inferences to test increasingly specific target hypotheses. Indeed,  
we suggest that the problem of target identification will not gener-
ally be solved by a single method but rather by analytical integration 
of multiple, complementary approaches.

Direct biochemical methods
Biochemical affinity purification provides the most direct approach 
to finding target proteins that bind small molecules of interest37. 
Because they are based on physical interactions involving mam-
malian or human proteins, biochemical methods can lead to infor-
mation about molecular mechanisms of efficacy or toxicity highly 
relevant to human disease. Similarly, small-molecule optimiza-
tion efforts can be complemented by biochemical methods when 
three-dimensional structure information about the target is known. 
Finally, unbiased protein identification, especially from lysates 
containing intact protein complexes, potentially allows evaluation  
of polypharmacology.

Pioneering work in affinity purification involved monitor-
ing chromatographic fractions for enzyme activity after exposure 
of extracts to compound immobilized on a column, followed by 
elution43. In general, such an approach requires large amounts of 
extract, possibly prefractionated, and stringent wash conditions. 
Such approaches have been used with success to identify certain pro-
tein targets, including those of both natural29 and synthetic44 small 
molecules, and one such approach has been used to elucidate the 
mechanism of the teratogenic side effect of thalidomide35. However, 
these methods seem best suited for situations where a high-affinity 
ligand binds a relatively abundant target protein. High-stringency 
washes can bias proteins identified to those with the highest- 
affinity interactions, decreasing the likelihood of finding additional 
targets that might be important in cellular contexts, as suggested  
by proteomic profiling studies (for example, those described in  
refs. 45, 46). Furthermore, stringent washing will also reduce the 
ability to identify protein complexes in which the direct target par-
ticipates and whose members’ identities might help illuminate the 
connection between the direct target and the cellular activity of the 
small molecule.

Affinity purification experiments also involve the challenge of 
preparing immobilized affinity reagents that retain cellular activ-
ity, so that target proteins will still interact with the small molecule 
while it is bound to a solid support. A related issue is the identifica-
tion of appropriate controls and tethers. Different approaches are 
possible; control beads loaded with an inactive analog47,48 or capped 
without compound have been used49. These control experiments 
have limitations, most notably the availability of related inactive 
compounds. The inactive analog must be sufficiently different from 
the compound of interest to fail to bind the target, raising the pos-
sibility that it will have different physicochemical properties and 
therefore different nonspecific interactions with proteins. In the 
case of capped beads, the results are confounded by the background 
of high-abundance, low-affinity proteins with slight differential 
binding to the control bead. Elution from the bead-bound small 
molecule24 or preincubation of lysate with compound is a viable 
alternative control35,49,50 but is limited by compound solubility. The 
choice of tether, influencing the type of background proteins iden-
tified, also becomes a critical parameter51–55. These challenges can 
frustrate individual attempts at affinity purification, particularly if a 
biochemical approach is used in isolation.

Recent affinity-based methods have attempted to overcome 
one or more of these challenges. Approaches based on chemical or  
ultraviolet light–induced cross-linking56,57 use covalent modifica-
tion of the protein target to increase the likelihood of capturing 
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Figure 1 | mechanism-of-action and target identification in chemical 
genetics. (a) Target-based approaches (reverse chemical genetics) begin 
with target validation, in which a role is established for a protein in a 
pathway or disease, followed by a biochemical assay to find candidate 
small molecules; mechanism-of-action studies are still required to validate 
cellular activities of candidates and evaluate possible side effects.  
(b) phenotype-based approaches (forward chemical genetics) begin  
with a phenotype in a model system and an assay for small molecules  
that can perturb this phenotype; candidate small molecules must then 
undergo target-identification and mechanism-of-action studies to 
determine the protein responsible for phenotypic change.
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low-abundance proteins or those with low affinity for the small 
molecule. This method requires prior knowledge of the enzyme 
activity being targeted, making it a slightly biased approach. If there 
is no bias, cross-linking of the small molecule to proteins is bur-
dened with the possibility of high, nonspecific background owing to 
the cross-linking event itself. A variation on the use of photoaffinity 
reagents couples covalent modification to two-dimensional gel elec-
trophoresis in an attempt to deconvolve nonspecific interactions58. 
A nonselective universal coupling method that enables attachment 
to a solid support by a photoaffinity reaction resulted in the identi-
fication of an inhibitor of glyoxalase I59. This method assumes that 
a compound could bind the solid support in multiple ways while 
some functional relevant sites remain available to interact with 
the protein target. This approach, however, runs the risk of false- 
negative results when the functional group is masked in the coupling 
reaction. Another method for immobilizing small molecules, that 
is, coupling them to peptides that allow them to recover the probe-
protein complex by immunoaffinity purification60, was devised to 
address this issue.

Some small-molecule libraries are prepared with synthetic 
handles primed for making affinity matrices after an activity is 
identified61,62. Because these methods rely on advance modification 
of the compound structure, they require additional chemistry exper-
tise and may not be possible for all compound classes. Similarly,  
if a small molecule can be fluorescently labeled, it can be used 
to probe proteins separated by microarray (reviewed in ref. 63). 
However, such methods are limited to proteins that can be readily 
manipulated, usually in heterologous expression systems. The use of 
purified proteins does not necessarily ensure physiological expres-
sion levels, giving incorrect information about relative binding to 
alternative targets in cells and masking effects due to the formation 
of protein complexes.

Two interesting new target-identification approaches that cir-
cumvent the need to immobilize compounds have emerged in the 
last few years. One of them uses changes in protein susceptibility 
to proteolytic degradation upon small-molecule binding (reviewed 
in ref. 64). The other is based on a characteristic shift in the chro-
matographic retention-time profile after a compound binds a pro-
tein target65. Although the generality of these approaches remains 
to be determined, their combination with quantitative proteomics 
is quite promising.

Affinity chromatography has been coupled to powerful new 
techniques in MS, which can possibly provide the most sensitive 
and unbiased methods of finding target proteins. Quantitative  
proteomics66 (reviewed in ref. 67) has been effective in identifying 
specific protein-protein interactions by affinity methods68,69 and has 
been increasingly applied to protein–small molecule interactions 
(reviewed in ref. 70). In the context of target identification, two dif-
ferent quantitative techniques have been used; these can be broadly 
divided into metabolic and chemical labeling.

Metabolic labeling, more specifically stable-isotope labeling by 
amino acids in cell culture (SILAC)71, has been effectively used, in 
experiments with gentle washing and free soluble competitor pre-
incubation of lysates, to provide unbiased assessment of multiple 
direct and indirect targets (Fig. 2)49. It has also been used in com-
bination with serial drug-affinity chromatography to characterize 
the quantitative changes of the kinome in different phases of the 
cell cycle72. Metabolic labeling has the advantage of allowing sample 
pooling early in the process, eliminating quantification errors due 
to sample handling. A disadvantage is that it limits the workflow to 
immortalized cell lines73.

Chemical labeling has also been successfully used in the past. 
Isotope-coded affinity tag (ICAT) technology74, coupled with 
beads loaded with active and inactive compound as controls, has 
been used to identify malate dehydrogenase as a specific target of 
the anticancer compound E7070 (ref. 47). Isobaric tags for relative 

and absolute quantification (iTRAQ)75, coupled with free soluble 
competitor for elution as a control, has been used to profile kinases 
enriched by affinity purification with nonselective kinase-binding 
small molecules76. There are variations on chemical-labeling strate-
gies, such as mass differential tags for relative and absolute quanti-
fication (mTRAQ)75, tandem mass tags (TMT)77 and stable isotope 
dimethyl labeling78,79. These chemical labeling strategies provide 
more versatility regarding the type of samples that can be labeled, 
but a weakness lies in the fact that they generally rely on labeling 
at the peptide level, later in the proteomic workflow, and thus are 
prone to more variation and less accuracy80.

These unbiased approaches show great promise but will require 
new software81–83 and analytical techniques84 to quantify the relative 
expression of members of candidate target lists to aid in experimen-
tal prioritization. In contrast, biased approaches to target deconvo-
lution based on profiling small-molecule activity against a panel of 
enzymes are now commercially available and widely used. These 
methods rely on prior knowledge of the enzyme family (kinases, 
ubiquitinases, demethylases and so on). For example, assay- 
performance profiling and compounds with a known mode of 
action were used to predict kinase inhibitory activity for new com-
pounds emerging from a phenotypic screen42. A commercial kinase 
profiling panel85 then confirmed activity against a subset of kinases. 
Having information from genetic studies or computational methods 
to decide which set of enzymes to investigate provides a valuable 
tool, again underscoring the importance of integrating all methods 
at the researcher’s disposal.

genetic interaction and genomic methods
Target identification based on genetic or genomic methods lever-
ages the relative ease of working with DNA and RNA to perform 
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trypsinization

Specific, direct
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Figure 2 | Illustration of stable isotope labeling and quantitative mS. 
Cells are labeled with either heavy- or light-isotope labels. one sample is 
exposed to bead-immobilized small molecules (SM) in the presence of 
soluble competitor compound and the other in the absence of competitor. 
Following mixing, washing and electrophoresis, samples are digested 
using trypsin and peptide fragments analyzed by quantitative MS49. ratios 
of heavy- and light-labeled peptides are used to determine specificity of 
interactions for the small molecule, potentially including both direct and 
indirect targets (for example, members of complexes including the direct 
target), but not to differentiate them.
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large-scale modifications and measurements. These methods often 
use the principle of genetic interaction, relying on the idea of genetic 
modifiers (enhancers or suppressors) to generate target hypotheses. 
Gene knockout organisms, RNAi (reviewed in ref. 86) and small 
molecules with well-defined mechanisms can each be used to  
alter the functions of putative targets, uncovering dependen-
cies on activity. For example, if a gene knockdown phenocopies a  
compound’s effects, the evidence that the protein could be the  
target relevant to that phenotype would be strengthened. In this 
case, hypersensitivity of individual mutants to sublethal concentra-
tions of compound demonstrates a chemical-genetic interaction 
(Fig. 3a). Similarly, mating of laboratory and wild yeast strains can 
reveal patterns of small-molecule sensitivity with specific genetic 
loci (Fig. 3b)87.

These concepts have been expanded to include molecularly  
barcoded libraries of open reading frames88 and detection of small 
molecule–resistant clones by microarray (Fig. 3c). Importantly, these  
studies provide a conceptual framework for understanding complex 
diseases. Although direct translation to human biology may not be 
forthcoming, owing to the lack of conservation of some pathways 
between yeast and human, this framework enables us to envision 
technical advances that facilitate this type of analysis in mammalian  
systems. An accompanying perspective in this series89 addresses 
these approaches in more detail.

A promising genetics-based technique for target identification 
involves combining results from small-molecule and RNAi pertur-
bations. This approach enables parallel testing of small-molecule 
and RNAi libraries for induction of the same cellular phenotype90,91. 
RNAi experiments can be performed on a genome-wide scale  
to find phenotypes similar to those induced by small molecules  
(Fig. 4a)92. Alternatively, when some mechanistic clues already 
exist, a more focused set of RNAi reagents can be used to find path-
way members that alter the effects of a small molecule (Fig. 4b)93. 
The main strength of combining small-molecule and RNAi pertur-
bations is the ability to measure phenotypic effects in more physi-
ologically relevant cellular contexts, using mammalian, or even 
human, cells. Clearly, genetic perturbations cannot always reca-
pitulate or phenocopy the effect of a small molecule94, for example 
because of the risk of genetic compensation. Using RNAi libraries 
that contain entire families of genes may help alleviate this problem. 
Another way to dissect these effects is to use a suboptimal concen-
tration of small molecule in combination with genetic knockdown. 
An elegant study provided proof of concept for RNAi-sensitized  

small- molecule screens95, which could serve as a follow-up method 
for the other techniques described in this review.

Genetic target-identification efforts are increasingly focused 
on mammalian cells. For example, examination of compound- 
resistant clones of cells, using transcriptome sequencing (RNA-seq), 
identified intracellular targets of normally cytotoxic compounds96. 
Advantages of this approach include the ability to perform cell 
type–specific analyses and not having to chemically modify the 
compound to perform the analysis. Clones of HCT116 colon  
cancer cells resistant to the polo-like kinase 1 (PLK1) inhibitor  
BI 2356 were sequenced and compared to the parental line. Although 
PLK1 was not mutated in every clone, it was the only gene mutated 
in more than one group; moreover, mutations were present in  
the known binding site of BI 2356. This proof-of-principle study 
may pave the way for more rapid target identification in mamma-
lian cells, although this approach is currently limited to cell viability 
as a phenotype.

Finally, recent efforts to use gene expression signatures to deter-
mine compounds’ mechanisms of action illustrate the close relation-
ship between genetic techniques and computational methods. Using 
transcription profiling data from the Connectivity Map97, a recent 
study described a weighting scheme to rank order lists of genes 
across multiple cell lines, resulting in what was termed a prototype 
ranked list98. The authors then used gene-set enrichment analysis99 
to compute pairwise distances between the ranked lists for each 
compound and constructed a network in which each compound 
was a node. Clustering revealed communities of nodes connected 
to each other, two-thirds of which were enriched for similar mecha-
nisms of action, as determined by anatomical therapeutic chemical 
codes. A limitation of this approach is the reliance on accurate anno-
tation of small-molecule activity, but even so, this type of sophisti-
cated approach will most likely uncover similarities between known 
bioactive compounds and new screening hits. The line separating 
genetic and computational approaches increasingly blurs as the 
technical hurdles to generating massive data sets are surmounted.

computational inference methods
On their own, computational methods are used to infer protein  
targets of small molecules, in addition to providing analytical sup-
port for proteomic and genetic techniques. These methods can  
also be used to find new targets for existing drugs, with the goal of 
drug repositioning or explaining off-target effects. Profiling meth-
ods rely on pattern recognition to integrate results of parallel or  
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Figure 3 | Illustrations of yeast genomic methods for target-identification and mechanism-of-action studies. (a) a panel of viable single-gene deletions 
is tested for small-molecule (SM) sensitivity, indicating synthetic-lethal interactions between potential targets and the original deletion; mechanisms are 
interpreted by comparing interactions to double-knockout strains146. (b) Different strains of diploid yeast are mated to form F1 recombinants, and meiotic 
progeny are subjected to small molecules; segregation frequencies allow mapping of small-molecule sensitivity to genetic loci147. (c) a recessive small 
molecule–resistant mutant is transformed with a wild-type open reading frame library; transformants obtaining a wild-type copy of the mutant gene are 
selectively sensitive to small molecules, resulting in their depletion among pooled transformants, as quantified by microarray89.
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multiplexed experiments, typically from small-molecule phenotypic 
profiling100,101. Ligand-based methods also incorporate chemical 
structures to predict targets. Structure-based methods rely on three-
dimensional protein structures to predict protein–small molecule 
interactions102,103. Owing to their limitation to proteins with known 
structures, structure-based methods will not be discussed in detail.

In general, bioactivity profiling methods are based on the prin-
ciple that compounds with the same mechanism of action will 
have similar behavior across different biological assays. Public 
databases of, for example, gene expression97,104 or small-molecule 
screening105,106 data sets house measurements that record pheno-
typic consequences of small-molecule perturbations. Target or 
mechanism inference frequently relies on the fact that molecules 
with known mechanisms of action (sometimes called landmark 
compounds100) are also profiled, allowing new compounds to be 
assessed for similar patterns of performance107,108. Small-molecule 
profiling data can be mined most effectively when there exists a crit-
ical mass of data generated using a common set of compounds and 
cell states (multidimensional screening109). A prototypical example 
of this type of study is the US National Cancer Institute’s ‘NCI-60’ set 
of 60 cancer cell lines that was exposed to a large collection of small 
molecules110. In a seminal study using the NCI-60 data set, protein 
targets were connected (via their degree of expression in each cell 
line) to small-molecule sensitivity patterns in the same cell lines39 
(reviewed in ref. 101). Similar studies, including those using the 
COMPARE algorithm110, have allowed researchers to hypothesize 

new activities for small molecules111. Such approaches represented 
important conceptual advances in this field because they considered 
multidimensional profiling as a method to identify small-molecule 
mechanisms of action.

Gene expression technology has also had an important role in 
profile-based inference of small-molecule targets and mechanisms. 
One early study used gene expression profiles of yeast treated with 
the immunosuppressants FK506 and cyclosporine A. This study not 
only recapitulated the importance of calcineurin in immunosup-
pression but also identified a number of other genes that were sug-
gested to be secondary targets112. Later, a compendium of yeast gene 
expression profiles was derived from both genetic mutations and 
small-molecule perturbations to annotate uncharacterized genes 
and pathways40. Commercial databases of rat tissue–based expres-
sion profiles following drug treatment were developed to identify 
toxicities of new chemical entities113. Subsequently, the Connectivity 
Map was developed as a public database of gene expression pro-
files derived from small-molecule perturbations of human cell lines 
(Fig. 5a), which enables the functions of new small molecules to be 
identified by pattern matching97.

Several groups have developed profiling methods based on 
other measurement technologies114,115, including affinity profiling of  
biochemical assays to predict ligand binding to proteins116, and on 
similarities among side-effect profiles117. Affinity profiling was also 
used to design biologically diverse screening libraries118. Several 
promising studies have involved profiling by high-throughput 
microscopy (sometimes called high-content screening), allowing 
phenotypes to be clustered, in a manner analogous to transcriptional 
profiles, to discover potential small-molecule targets119,120. More 
generally, public databases such as ChemBank105 or PubChem106 
provide extensible environments for accumulating rich phenotypic 
profiles for many compounds exposed to a diverse set of assays 
and have been exploited to understand both bioinformatic121 and 
cheminformatic101,122 relationships (Fig. 5b).

More focused profiling methods investigate only particular 
aspects of biological systems. For example, high-throughput screen-
ing (HTS) activity profiling and a guilt-by-association approach 
were used to determine mechanisms of action for hits in an antima-
larial screen123. Another study124 examined small molecule–induced 
cell death and systematically characterized lethal compounds on the 
basis of modulatory profiles, created experimentally by measuring 
cell viability. Comparison of modulatory profile clusters with gene 
expression– and structure-based profiles demonstrated that that 
modulatory profiles revealed additional relationships. Bioactivity 
profile similarity search (BASS) is another method that uses profiles 
of dose-response cell-based assay results to associate targets with 
small molecules125. It is increasingly likely that single measurements 
will be inadequate to the task of determining mechanism of action.
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Figure 4 | Illustrations of rNai-based methods for target-identification 
and mechanism-of-action studies. (a) in one implementation, phenotypes 
from genome-wide rNai are compared to those induced by a small 
molecule (SM) of interest; full or partial phenocopy of the small-molecule 
effect by rNai provides evidence that the gene product is a small-
molecule target92. (b) When prior evidence suggests a particular target 
pathway, focused sets of rNa reagents can help to generate mechanistic 
hypotheses. in general, rNai can enhance or suppress small-molecule 
effects, as in genetic epistasis analysis; in practice, more complex 
relationships among proteins than those illustrated may also exist93.
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Figure 5 | Illustration of computational inference methods for target-
identification and mechanism-of-action studies. in general, data sets 
that provide multidimensional readouts of small molecule (SM)-induced 
phenotypes can be used to provide connections between new small-
molecule signatures and reference databases by similarity to ‘landmark’ 
compounds with known mechanisms of action.
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Recent profiling methods have taken full advantage of high-
throughput data available in public and proprietary screening 
databases, for example by developing HTS fingerprints (HTS-FP) 
with a goal of facilitating virtual screening and scaffold hopping126. 
Enrichment of gene ontology terms among known protein targets 
was observed within HTS-FP clusters. Further, HTS-FP can be used 
to select biologically diverse compounds for screening when testing 
the full library is not possible.

Using ligand-based predictive modeling to classify com-
pounds is a well-established practice in computational chemistry. 
Independently, two groups have extended predictive-modeling 
approaches to explore global relationships among biological tar-
gets. In one case127, protein-ligand interactions were explored with 
a goal of predicting targets for new compounds. Using Laplacian-
modified naive Bayesian modeling, trained on 964 target classes in 
the WOMBAT database, the researchers were able to predict the  
top three most likely protein targets and validated their approach  
by examining therapeutic activities of compounds in the MDL  
Drug Data Report database. Such modeling can also be used to 
explain off-target effects or to design target- or family-focused 
libraries. In a separate but similar approach128, a large collection 
of structure-activity relationship data was assembled from vari-
ous public and proprietary sources, resulting in a set of 836 human 
genes that are targets of small molecules with binding affinities less 
than 10 μM. These connections were used to generate a polyphar-
macology interaction network of proteins in chemical space. This 
network enables a deeper understanding of compound and target 
cross-reactivity (promiscuity) and provides rational approaches to 
lead hopping and target hopping.

Chemical similarity is often used as a metric of success for  
pattern-recognition approaches. The similarity ensemble approach 
(SEA)129 works by quantitatively grouping related proteins on the 
basis of the chemical similarity of their ligands. For each pair of 
targets, chemical similarity was computed and properly normalized 
according to a null model of random similarity. Even though only 
ligand chemical information was used, biologically related clusters of 
proteins emerged. Importantly, in the SEA results, there were cases 
of ligand-based clusters differing from protein sequence–based 
clusters; for example, ion channels and G protein–coupled receptors 
are ligand related, but they have no structure or sequence similarity.  
In contrast, many neurological receptors with related sequences 
lack pharmacological similarity. The authors documented the utility 
of SEA by predicting and confirming off-target activities of metha-
done, loperamide and emetine. Large-scale prediction of off-target 
activities using SEA was subsequently described130.

SEA is well suited to provide insights into the mechanisms of 
action of small molecules. With that purpose in mind, SEA was 
used on the MDL Drug Data Report database to predict new 
ligand-target interactions131. The predictions were either confirmed 
by literature or database search or investigated experimentally. 
Out of 30 experimentally tested predictions, 23 were confirmed. 
This work was extended to ‘de-orphan’ seven US Food and Drug 
Administration–approved drugs with unknown targets132. SEA has 
also been used to predict targets of compounds that were active in a 
zebrafish behavioral assay133. Out of 20 predictions that were tested 
experimentally, the authors confirmed 11, with activities ranging 
from 1 nM to 10 μM. These results suggest that chemical informa-
tion alone can be sufficient to make predictions using this approach. 
Additional ligand-based target-identification methods have been 
reported (reviewed in ref. 103).

Network-based approaches extend systems biology to drug-
target and ligand-target networks and are now known as ‘systems 
chemical biology’134, ‘network pharmacology’135 or ‘systems phar-
macology’136. Such approaches are necessary, as many phenotypes 
are caused by effects of compounds on multiple targets. An explo-
ration of the relationship between drug chemical structures, target 

protein sequences and drug-target network topology resulted in 
the creation of a unified ‘pharmacological space’ that could pre-
dict ligand-target interactions for new compounds and proteins137. 
Several additional studies report recent advances in network-based 
approaches to target prediction138,139.

Inference-based methods arguably have the least bias of any 
 target-identification method as they often rely on experiments done 
by others. The analyst is distant from the original experimental 
design and is therefore poised to reveal unanticipated relationships. 
In contrast, such studies rely on data sets that require substantial time 
and investment, however distributed, to realize. Fortunately, compu-
tational techniques have increasingly emerged to take advantage of 
the explosion of public data sources. Structured publicly accessible 
databases are the best hope for the success of such methods; they not 
only promote the availability of data from multiple sources but also 
encourage rigor among experimentalists by exposing their data to 
critical evaluation by the scientific community at large.

Summary and outlook
Each of the described approaches to target-identification and  
mechanism-of-action studies has strengths and limitations, and, 
importantly, different laboratories will have different technical 
strengths. Laboratories with expertise in chemistry or biochemis-
try might gravitate toward direct biochemical approaches, whereas 
genetic or cell biology laboratories might favor genetic interaction 
approaches, and groups with a high degree of computational experi-
ence might first pursue methods that investigate databases for clues. 
Of course, there is no ‘right answer’ about which method is best. 
Rather, we suggest that a combination of approaches93,140 is most 
likely to bear fruit (Fig. 6).

There have been a few examples of successful integration of  
different methods to help determine the mechanism of action of  
a small molecule. An integrated approach was used to characterize 
the ability of a well-known natural product, K252a, to potentiate 
Nrg1-induced neurite outgrowth141. Integrating quantitative pro-
teomic results with a lentivirus-mediated loss-of-function screen 
to validate candidate target proteins, the authors found that knock-
down of AAK-1 reproducibly potentiated Nrg-1–driven neurite 
outgrowth. Similarly, the mechanism by which another natural prod-
uct, piperlongumine, selectively kills cancer cells was determined  
by a combination of direct proteomic affinity-enrichment and short 
hairpin RNA methods142.

To determine whether bortezomib neurotoxicity could be attrib-
uted to off-target effects, secondary targets of the proteasome inhibi-
tors bortezomib and carfilzomib were explored143. The authors used 
a multifaceted approach, involving screening a panel of purified 
enzymes, activity-based probe profiling in cells and cell lysates and 

Small-molecule
discovery

Genetic interaction
methods

Global expression
profiling

Direct biochemical
methods

Computational
inference methods

Target
identification

Figure 6 | Illustration of a conceptual workflow for integrated target-
identification and mechanism-of-action studies. Small-molecule 
discovery often starts with phenotypic screening, and, depending on the 
expertise available to the researchers, target identification could proceed 
using any combination of direct biochemical methods, genetic or genomic 
methods or using computational inference methods. a key component for 
success is the integration of data from all available methods to produce the 
most reliable target and mechanistic hypotheses.
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mining a database of known and predicted proteases, to show that 
bortezomib inhibits several serine proteases and to hypothesize that 
its neurotoxicity may be caused by off-target effects.

Computational data integration and network analysis were 
instrumental in determining Aurora kinase A as a relevant tar-
get of dimethylfasudil in acute megakaryoblastic leukemia144. 
Dimethylfasudil is a broad-spectrum kinase inhibitor; integrating 
quantitative proteomics data, kinase inhibition profiling and RNA-
silencing data allowed the researchers to generate a testable hypoth-
esis which not only identified the physiologically relevant target 
of dimethylfasudil but also a potential therapeutic target for acute 
megakaryoblastic leukemia. Another elegant application of inte-
grating transcriptional data with proteomic data was used to dissect 
the synergy between two multikinase inhibitors in chronic myelog-
enous leukemia cell lines145. A combination of proteomic methods 
to measure drug binding in cell lysates, global phosphoproteomics 
and genome-wide transcriptomics demonstrated synergy between 
danusertib and bosutinib in chronic myelogenous leukemia cells 
harboring the BCR-ABLT315I gatekeeper mutation.

These very recent examples show how powerful the ability to 
effectively and systematically integrate large sets of disparate data 
will be in understanding the molecular mechanisms of a small 
molecule in biological systems. When done in a disciplined and 
thoughtful manner, such data integration represents a modern 
instantiation of the scientific method, relying on high-throughput 
technology, data integration and multidisciplinary approaches  
to provide clues and avenues to new targets and mechanisms of 
small-molecule action. 
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